1,881 research outputs found

    Dynamical heterogeneity in soft particle suspensions under shear

    Get PDF
    We present experimental measurements of dynamical heterogeneities in a dense system of microgel spheres, sheared at different rates and at different packing fractions in a microfluidic channel, and visualized with high speed digital video microscopy. A four-point dynamic susceptibility is deduced from video correlations, and is found to exhibit a peak that grows in height and shifts to longer times as the jamming transition is approached from two different directions. In particular, the time for particle-size root-mean square relative displacements is found to scale as τ(γ˙Δϕ4)1\tau^* \sim (\dot \gamma \Delta \phi^4)^{-1} where γ˙\dot\gamma is the strain rate and Δϕ=ϕϕc\Delta\phi=|\phi-\phi_c| is the distance from the random close packing volume fraction. The typical number of particles in a dynamical heterogeneity is deduced from the susceptibility peak height and found to scale as n(γ˙Δϕ4)0.3n^* \sim (\dot \gamma \Delta \phi^4)^{-0.3}. Exponent uncertainties are less than ten percent. We emphasize that the same power-law behavior is found at packing fractions above and below ϕc\phi_c. Thus, our results considerably extend a previous observation of nγ˙0.3n^* \sim \dot\gamma^{-0.3} for granular heap flow at fixed packing below ϕc\phi_c. Furthermore, the implied result n(τ)0.3n^*\sim (\tau^*)^{0.3} compares well with expectation from mode-coupling theory and with prior observations for driven granular systems

    Conceptual design study of advanced acoustic-composite nacelles

    Get PDF
    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits

    Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall

    Get PDF
    Over the last two decades, concepts of scale invariance have come to the fore in both modeling and data analysis in hydrological precipitation research. With the advent of the use of the multiplicative random cascade model, these concepts have become increasingly more important. However, unifying this statistical view of the phenomenon with the physics of rainfall has proven to be a rather nontrivial task. In this paper, we present a simple model, developed entirely from qualitative physical arguments, without invoking any statistical assumptions, to represent tropical atmospheric convection over the ocean. The model is analyzed numerically. It shows that the data from the model rainfall look very spiky, as if generated from a random field model. They look qualitatively similar to real rainfall data sets from Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE). A critical point is found in a model parameter corresponding to the Convective Inhibition (CIN), at which rainfall changes abruptly from non-zero to a uniform zero value over the entire domain. Near the critical value of this parameter, the model rainfall field exhibits multifractal scaling determined from a fractional wetted area analysis and a moment scaling analysis. It therefore must exhibit long-range spatial correlations at this point, a situation qualitatively similar to that shown by multiplicative random cascade models and GATE rainfall data sets analyzed previously (Over and Gupta, 1994; Over, 1995). However, the scaling exponents associated with the model data are different from those estimated with real data. This comparison identifies a new theoretical framework for testing diverse physical hypotheses governing rainfall based in empirically observed scaling statistics

    Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model

    No full text
    International audienceWe present the construction of a dynamic area fraction model (DAFM), representing a new class of models for an earth-like planet. The model presented here has no spatial dimensions, but contains coupled parameterizations for all the major components of the hydrological cycle involving liquid, solid and vapor phases. We investigate the nature of feedback processes with this model in regulating Earth's climate as a highly nonlinear coupled system. The model includes solar radiation, evapotranspiration from dynamically competing trees and grasses, an ocean, an ice cap, precipitation, dynamic clouds, and a static carbon greenhouse effect. This model therefore shares some of the characteristics of an Earth System Model of Intermediate complexity. We perform two experiments with this model to determine the potential effects of positive and negative feedbacks due to a dynamic hydrological cycle, and due to the relative distribution of trees and grasses, in regulating global mean temperature. In the first experiment, we vary the intensity of insolation on the model's surface both with and without an active (fully coupled) water cycle. In the second, we test the strength of feedbacks with biota in a fully coupled model by varying the optimal growing temperature for our two plant species (trees and grasses). We find that the negative feedbacks associated with the water cycle are far more powerful than those associated with the biota, but that the biota still play a significant role in shaping the model climate. third experiment, we vary the heat and moisture transport coefficient in an attempt to represent changing atmospheric circulations

    Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser

    Get PDF
    Background: Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold environments (i.e. < 10°C). Results: Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples (which differed in arsenite concentration) collected from one biofilm. 'Species' (sequence) richness did not differ between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth phase and to grow at a broad range of temperatures (4-25°C). Its arsenite oxidase was constitutively expressed and functioned over a broad temperature range. Conclusions: The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the ability to grow below 10°C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation in moderate to cold climates

    Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs

    Get PDF
    The ambipolar diffusion length and carrier lifetime are measured in AlxGa1−xAs for several mole fractions in the interval 0<x<0.38. These parameters are found to have significantly higher values in the higher mole fraction samples. These increases are attributed to occupation of states in the indirect valleys, and supporting calculations are presented

    Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking

    Full text link
    We study theoretically the optics in undoped direct gap semiconductors which are strongly driven in the THz regime. We calculate the optical sideband generation due to nonlinear mixing of the THz field and the near infrared probe. Starting with an inversion symmetric microscopic Hamiltonian we include the THz field nonperturbatively using non-equilibrium Green function techniques. We find that a self induced relativistic spin-THz field coupling locally breaks the inversion symmetry, resulting in the formation of odd sidebands which otherwise are absent.Comment: 8 pages, 6 figure

    Factors influencing recruitment and appearance of bull kelp, Nereocystis luetkeana (phylum Ochrophyta)

    Get PDF
    The dynamics of annual species are strongly tied to their capacity for recruitment each year. We examined how competition and propagule availability influence recruitment and appearance and tracked survivorship of an annual species of marine macroalgae, the bull kelp (Nereocystis luetkeana), which serves as major biogenic habitat in the Salish Sea of Washington State. We hypothesized that 1) juvenile N. luetkeana would exhibit a seasonal appearance as a cohort in the spring and 2) competition for space would be more limiting than propagules (spores) to recruitment at sites adjacent to established N. luetkeana beds. We tagged N. luetkeana recruits in the field to track appearance and survivorship across seasons (spring, summer, fall, and winter), using a two‐factor crossed design to assess effects of competition and propagule availability on appearance of new N. luetkeana sporophytes. Survivorship of N. luetkeana recruits was low and, while most new individuals arose in the spring, some appeared in every season. New N. luetkeanarecruits also appeared the earliest (median 8 weeks vs. \u3e20 weeks) after experimental “seeding” in the spring as compared to other seasons. Eliminating macroalgal competitors (“clearing”) influenced the appearance of recruits more than enhancement of propagules in the spring. An improved understanding of factors regulating the seasonal appearance of new N. luetkeana sporophytes furthers our understanding of this crucial foundation species’ appearance and persistence across seasons, which is increasingly important as global ocean conditions change, and highlights the importance of studying organisms with complex life histories across multiple stages and geographical regions
    corecore